Solving Inequalities

- To solve an inequality, use the same procedure as solving an equation with one exception. When multiplying or dividing by a negative number, reverse the direction of the inequality sign.

$$
\text { - } \begin{aligned}
-3 x & <6 \quad \text { divide both sides by }-3 \\
-3 x /-3 & >6 /-3 \\
x & >-2
\end{aligned}
$$

Solving Inequalities

$$
\begin{aligned}
-4 x+2 & >10 \\
-4 x & >8 \\
x & <-2
\end{aligned}
$$

- To graph the solution set, circle the boundary and shade according to the inequality.

- Use an open circle for < or > and closed circles for \leq or \geq.

Solving Inequalities

- $3 b-2(b-5)<2(b+4)$

$$
\begin{aligned}
3 b-2 b+10 & <2 b+8 \\
b+10 & <2 b+8 \\
-b+10 & <8 \\
-b & <-2 \\
b & >2
\end{aligned}
$$

$$
012
$$

Solving Absolute Value Inequalities

- Solving absolute value inequalities is a combination of solving absolute value equations and inequalities.
- Rewrite the absolute value inequality.
- For the first equation, all you have to do is drop the absolute value bars.
- For the second equation, you have to negate the right side of the inequality and reverse the inequality sign.

Solve: $|2 x+4|>12$

$2 x+4>12$	or	$2 x+4<-12$
$2 x>8$		$2 x<-16$
$x>4$	or	$x<-8$

$$
x<-8 \text { or } x>4
$$

Solve: $2|4-x|<10$

$$
\begin{aligned}
& |4-x|<5 \\
& 4-x<5 \text { and } 4-x>-5 \\
& -x<1 \quad-x>-9 \\
& x>-1 \text { and } x<9 \\
& -1<x<9
\end{aligned}
$$

